
in

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY July 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 DAC interface and applications . 1

1.2 Dump - the application that dumps the text-lines onto the printer . 1

1.3 Developer information . 4

1.4 Description . 7

in 1 / 12

Chapter 1

in

1.1 DAC interface and applications

Dump
The graphical page dumper

Developer
The developer material

1.2 Dump - the application that dumps the text-lines onto the printer

The application DAC-Dump

The DAC-Dump program is used to dump the contents of an archive or of a ←↩
marked text-block onto the

printer. It’s currently a bit tricky (in form of "not too system ←↩
conform" but it works. The DAC-interface of

BareED has yet only limited functions - so Dump cannot offer more!

Before you use the menu "Project - Print" which will start Dump, you have to set ←↩
the desired output mode via

the System preferences editors, "Printer", "PrinterGfx" and if necessary ←↩
"PrinterPS". Dump will take your

entered settings into account when laying out the entire pages!

Since Dump and BareED are somewhat limited, you should take care that ←↩
BareED doesn’t allow you to

modify the archive while a DAC application is running.

Currently, the graphical dump will be only made in monochrome (black / white) ←↩
. Since the System’s printer

driver is used for dumping, the result is poor. Because of this, Dump is ←↩
an external program that can be

replaced by a third party program, which for example is connected to a commercial ←↩
printer program.

in 2 / 12

You have the choice to dump the whole archive or only a selected block of ←↩
characters. How to mark a block

inside of BareED should be clear.

If you use a usually print-device of the OS, please firstly choose " ←↩
Pica" as Print Pitch and set the

appropriate values for Page Length, Left Margin and Right Margin - since the ←↩
original printer-drivers rely on

these values to compute the correct aspect-ratio - which cannot be changed by Dump ←↩
.

To start dumping a page onto the printer choose "Project - Print". BareED ←↩
will look then for a file labelled

Dump in its home-directory in a separate directory labelled DAC or in its ←↩
home-directory only if the DAC

directory is non-existent!

Example:

Work:Tools/Editors/BareED home-directory for the program BareED

This directory contains following files and directories:
BareED
BareED.info
BareED.guide
BareED.guide.info
Button.cfg
catalogs
catcomp_files
defs
fonts
images
knobs
LastMinute
LastMinute.info
ReadMe
ReadMe.info
rexx
source
tool

If there is now also a directory DAC this one is scanned for the file Dump.
If this directory is not present, the home-directoy is scanned for the file Dump ←↩

.

If this directory is not present, the home directory is scanned for the file ←↩
Dump.

If the file Dump is neither to find in the DAC- and home-directory BareED will ←↩
fail with the message:

Cannot load the program’s code! - File not present?

If the file was found and you have still not set the right margin a ←↩
requester appears where you

in 3 / 12

have to set it! Characters beyond the entered right margin will not be printed ←↩
out!

If you are sure that you know the rightmost character’s offset (right margin) ←↩
you can enter it. If not,

enter a huge value, for example 300.

A requester appears where the source width and height are displayed in pixel ←↩
and the destination

is displayed as dots (dots = printer pixels).

Now Dump begins to calculate each string line’s length. If there is a string ←↩
line that exceeds your

rightmost offset, a requester appears telling so. You have now the chance to ←↩
abort or to continue

calculating string lengths.

In case you continue, some more requester may pop up.

When Dump has rummaged through all string lines a requester appears that tells ←↩
you how wide the

widest string is. Remember the rightmost character’s offset for later if ←↩
you have entered a huge

value earlier.

Since we cannot stop here, we click "Okay".

If your set right margin would be lesser than the computed, a requester appears ←↩
that tells you so. If

you agree to continue, click "Okay" to dump the characters. In this case ←↩
some string lines are

truncated to fit onto the concerned page.

If you have entered a huge value only to compute the widest string length, ←↩
you can now safely

quit here.

In case you have set the right margin correct or you want some string ←↩
lines to be truncated you

are now at a point, where a requester shows up that tells you how many pages ←↩
would be needed

to dump these strings. You have another chance to quit here - or you can now ←↩
start the dump.

Say, that you instruct Dump to dump the string lines onto the printer - ←↩
somewhat more or less time

is gone before the printer will start to work. Once more: You can’t modify ←↩
the archive while Dump

is in progress!

The graphical dump is made in a manner so that the right margin you have ←↩
entered will fit as last character

onto the page. This means that basing on your defined area a complete ←↩
printer-line is used to mirror the

string line!

in 4 / 12

If you need at left and right of the printed area more space choose easily in ←↩
the System Preferences editor

Printer new values for left and right margin. Dump will take them into account ←↩
when it is going to calculate the

dimension for printout.

If you want to stop the graphic dump for a while (meanwhile you can speak to ←↩
others - in case you use a

pin-writer - like me!), choose easily "Pause/Continue" in the progress- ←↩
bar. Later on you can click this

button again to continue the dump.

If you want to abort the dump, click the "Abandon" button in the progress-bar.

In addition, you can use a System-monitor to find the task (process) "Dump". ←↩
Signal him a CTRL-C signal.

Dump will stop as soon as possible. You may also use the "BreakTask" command, ←↩
which can be found within

the NDUK package.

Depending on your printer there can be a small confusion:
When a page has been completely filled with the graphic dump and a new page is ←↩

required, Dump
will send an "Eject Page" command to the printer. If your printer itself ←↩

has recognize that a new
page is required, it will "eject the current page" and later on it gets the ←↩

same instruction from Dump
so that an empty page is ejected.
This is harmless but annoying and only occurs when the last graphic-dump-line ←↩

fits exactly to the
last position of page!

1.3 Developer information

This page is under construction...

First of all, DAC means direct communication with an application - without using ←↩
Exec-messages!

Any DAC-application runs asynchronous from BareED. BareED is not inhibited ←↩
while a DAC application is

running!

Currently the DAC-interface of BareED is poor - but if there is interest in an ←↩
expanded interface I will write it.

A DAC application is a standard Amiga-DOS load file (program) with no ←↩
restrictions in size or hunk-layout

other than limited by the Amiga-DOS. This means also - if you use a C-compiler ←↩
- that you can use small

code and data model.

A DAC application will be started from BareED! No other technique is supported ←↩
or will be in the future! This

in 5 / 12

means that you have to know which process fired up your application. To ←↩
determine "who was that?" the

standard Workbench-start-up-message is used with additional information enclosed.

The field "Name" of the message’s node points to the string "BAREED". When you ←↩
encounter this, you know

that BareED has launched your application.

In ANSI-C this would cost us these lines:

#include <workbench/startup.h>
#include <string.h>

#include <bareed_dac.h>

extern struct WBStartup *WBenchMsg;

struct PseudoMsg *PsMsg;

int main(unsigned int argc, unsigned char **argv)
{

/* Figure out if we have been started from a CLI surround or from the desktop */
if (!WBenchMsg)

return 30; // Return error, was CLI

/* Figure out if we have been launched by Workbench or BareED */
if (strcmp(WBenchMsg->sm_Message.mn_Node.ln_Name, "BAREED") != NULL)

return 20; // Return error, was Workbench

/* Found out that we’re running as DAC-application under BareED */
.....

Since we found out that BareED launched us, we can now convert the pointer to the ←↩
WBStartup message into

a PseudoMsg pointer:

PsMsg = (struct PseudoMsg *) WBenchMsg;

Note: The PseudoMsg is once set up by BareED (when it launched the application) ←↩
and the attributes of

the archive (project) cannot be changed by the user while your DAC ←↩
application is still alive,

except BlockStart and BlockEnd! But- later on by the user newly set ←↩
cursor-positions or page

offsets, the editor window size and a bit more will not be mirrored ←↩
by the already gotten

PseudoMsg and currently BareED does not stop the user from changing ←↩
them! Therefore

pm_GetAttr () and pm_ChangeAttr () have been wisely (hey, I’m so clever) ←↩
implemented which are

currently out of order (I’m so lazy).

The PseudoMsg looks like this:

struct PseudoMsg
{

struct WBStartup pm_Startup; Only readable!

in 6 / 12

BPTR pm_Lock; Hands off!
unsigned char *pm_Name; Hands off!
unsigned char pm_FileName[108]; Hands off!
unsigned char pm_Dir[256]; Hands off!
struct GfxBase *pm_GfxBase;
struct IntuitionBase *pm_IntuitionBase;
struct Library *pm_GadToolsBase;
struct Library *pm_DiskfontBase;
struct Library *pm_AslBase;
struct Library *pm_IconBase;
struct Library *pm_LocaleBase;
struct Library *pm_WorkbenchBase;
void *pm_VisualInfo; Only read- and useable - don’t release it!
struct DrawInfo *pm_DrawInfo; Only read- and useable - don’t release it!
unsigned char *pm_RegionStart; Start of memory block for letters
unsigned int pm_RegionSize; Size in bytes (multiple of 16Kb)
unsigned char *pm_TextStart; First letter
unsigned char *pm_TextEnd; Last letter
unsigned char *pm_BlockStart; First letter in block
unsigned char *pm_BlockEnd; Last letter in block
struct TextAttr *pm_FontAttr; Font is using this attributes
struct TextFont *pm_Font; The font itself
struct Window *pm_EdWindow; The editor surrounding
unsigned int pm_TabWidth; In pixels
unsigned int pm_TabStops; A tap stop occurs every ’n’
unsigned int pm_RightMargin;
unsigned char *pm_CharSpace; Pointer to the character-spaces of the used ←↩

font
void (*pm_GetAttr)(struct TagItem *taglist); Currently NULL (out of order!)
void (*pm_ChangeAttr)(struct TagItem *taglist); Currently NULL (out of order ←↩

!)
void (*pm_BlockInput)(void);
void (*pm_AllowInput)(void);
void (*pm_Tell)(STRPTR str);
unsigned int (*pm_CaseTell)(STRPTR str);
unsigned int (*pm_RequestNumber)(unsigned int initial, STRPTR winname, STRPTR ←↩

hailtext,\
STRPTR gadtext, BOOL zero);

unsigned int (*pm_StrPixelLen)(unsigned char *start, unsigned char *end);
void (*pm_DumpStrLine)(unsigned char *start, unsigned char *end, struct ←↩

RastPort *rp,\
unsigned int x, unsigned int y);

unsigned int (*pm_WidestStrLen)(unsigned char *text, unsigned char *stop,\
unsigned int (*inform_code)(unsigned int len, unsigned int ←↩

line),\
unsigned int inform);

void (*pm_DumpStrings)(struct RastPort *rp,\
unsigned int (*dump_code)(unsigned int len, unsigned int ←↩

line),\
unsigned char *text, unsigned char *stop);

void (*pm_FreeProgressBar)(struct ProgressBar *pb);
struct ProgressBar *(*pm_CreateProgressBar)(STRPTR wintitle, STRPTR hail, ←↩

STRPTR stop, STRPTR cont,\
STRPTR cancel);

unsigned int (*pm_PullPBarEvent)(struct ProgressBar *pb);
void (*pm_ChangePBarIndicator)(struct ProgressBar *pb, unsigned int percent, ←↩

STRPTR hail);

in 7 / 12

<<< Following does not work properly yet - so don’t use! >>>
void (*pm_TogglePBarGad)(struct ProgressBar *pb);

};

Detailed structure description
If you have written a DAC application and you now want to run ←↩

it under BareED you simply press CTRL-D
within BareED’s editor-window and a file requester will appear where you ←↩

can choose your application,
which will afterwards be loaded in and executed.

When a DAC application has crashed, BareED will not get back the sent message ←↩
and therewith BareED will

not allow to modify the archive. Since the project is protected against ←↩
modifications BareED isn’t able to quit,

too.

There is a possibility to normalise BareED:
To do so enter at the CLI-prompt:
1> rx "address BAREED.n; reset daccnt"

- where n represents the use count
This ARexx macro line will set the intern BareED counters to zero!

NOTE:
A DAC application will be fired up with a stack size of 8192 bytes. ←↩

This should be enough for the most
programs! You should hold in mind that your task uses BareED functions ←↩

(code) so these functions are
re-entrant.

1.4 Description

pm_Startup = a normal workbench start-up-message with the exception that the ←↩
field "Name" of the

node structure points to the string "BAREED" and where the field ←↩
priority of the node

structure holds this PseudoMessage version (currently 0 = beta)
pm_Lock to pm_Dir are private, hands off - they are used by the pm_Startup ←↩

structure

pm_GfxBase = library base pointer
pm_IntuitionBase = library base pointer
pm_GadToolsBase = library base pointer
pm_DiskfontBase = library base pointer
pm_AslBase = library base pointer
pm_IconBase = library base pointer
pm_LocaleBase = library base pointer
pm_WorkbenchBase = library base pointer

pm_VisualInfo = pointer to GadTools required info - read- and useable by you - ←↩
but never release it!

in 8 / 12

(never call FreeVisualInfo() on it!)
pm_DrawInfo = pointer to GadTools/Intuition draw-info structure - same rules as ←↩

for VisualInfo!
pm_Region = address storage start

pm_RegionSize = amount in bytes of storage
pm_TextStart = address first character in archive
pm_TextEnd = address last character in archive

pm_BlockStart = address first character of a marked block
pm_BlockEnd = last character of this block

pm_FontAttr = TextAttr structure that is currently used by the editor-window
pm_Font = the already opened TextFont pointer

pm_EdWindow = pointer to an Intuition engaged window structure used as editor- ←↩
window

pm_TabWidth = how many pixel to move to the right to get the next tabulator offset
pm_TabStops = after how many space-characters a new tabulator offset is ←↩

reached (only valid if
using mono-space-fonts - using proportional fonts it’s a bit more ←↩

difficult due to
alignment rules)

pm_RightMargin = amount space-characters used to form the rightmost character ←↩
offset

pm_CharSpace = pointer to an array of 256 bytes where each byte is ←↩
viewed as an index to the

LATIN-1 char set and where these bytes will hold the concerned character’s ←↩
width

EXAMPLE:
WidthOfSpaceChar = pseudomsg->pm_CharSpace[32];
WidthOfMChar = pseudomsg->CharSpace[’M’];
WidthOfDoubleSChar = pseudomsg->CharSpace[(UBYTE) ’ß’];
Note: casting the character is necessary if using characters greater ←↩

than
index 127 (unsigned) to ignore the MSB!

from assembler
movea.l _pseudomsg,A0
movea.l pm_CharSpace(A0),A0
move.w #’M’,D0
move.b 0(A0,D0.w),D0
move.w D0,_WidthOfMChar

pm_GetAttr() = pointer to a function that will in the future allow to return ←↩
the current state of BareED

and its project
NOTE: this function must in no way be called for the current ←↩

versions of BareED
because pm_GetAttr () is a NULL-pointer! For later versions, ←↩

check first if this
pointer is non-zero!

pm_ChangeAttr() = pointer to a function that will in the future allow to ←↩
change the current attributes of

BareED

in 9 / 12

NOTE: this function must in no way be called for the current ←↩
versions of BareED

because pm_ChangeAttr () is a NULL-pointer! For later versions, ←↩
check first if

this pointer is non-zero!

pm_BlockInput() = pointer to a function: forbid any modifications through the user
pm_AllowInput() = pointer to function: allow modifications through the user

PLEASE: Use pm_BlockInput() and pm_AllowInput() wisely. In the most ←↩
cases it

should not be necessary to call these two function since when a DAC ←↩
application is

running, BareED prevents the archive to be modified through ARexx and ←↩
the user,

exception: the newly marking / demarking of text blocks!

pm_Tell() = pointer to a function: to tell user what is going on
pm_CaseTell() = pointer to a function: to give the user the chance to say "Okay" ←↩

or "Cancel"
pm_RequestNumber()= pointer to a function: to get a number from the user

pm_StrPixelLen() = pointer to a function:
Get length in pixels a string line takes up where the current ←↩

attributes of the archive
will be taken into account

INPUTS:
start - first character in line
end - last character in line (normally Linefeed or zero byte)

RESULTS:
width - in pixels

pm_DumpStrLine() = pointer to a function:
Dump a series of characters to a specified raster port where the ←↩

current attributes of
the archive will be taken into account

WARNING: boundaries are not check - thus you have to ensure that no ←↩
pixels are

drawn beyond the memory region (bit planes)

INPUTS:
Address first and last character in line to dump

start - first character in line
end - last character in line (normally LineFeed or zero byte) rp -

Pointer to raster port where to visualize the characters x -
leftmost position to start the render (normally 0)

y - topmost position to start the render (normally 0)

RESULTS:
Printed line or none

NOTES:
The y-coordinate is corrected by this function with the TextFont- ←↩

tf_Baseline
value to ensure that the text is right rendered.

in 10 / 12

This function uses the Graphic-library functions Text() and Move()

pm_WidestStrLen() = pointer to a function:
Get the widest string (in pixels) and inform caller when out of his set ←↩

range where the
current attributes of the archive will be taken into account

INPUTS:
start - address of the character you like to start with
stop - at this character (address) WidestStrLen() will stop - if ←↩

not
encountered already archive’s end

inform_code - routine which is invoked when a line length exeeds your set
’inform’ range
Return TRUE if you want to continue computing line length or
FALSE to stop

inform - widest string width in pixel you allow without to be informed

RESULTS:
widest string length in pixels

NOTES:
inform_code() may be zero, then your CallBack routine is not called
Your inform_code() is called with two stack parameters:

1) length in pixels
2) actual line number, which is counted on by "start"

Your inform_code() does not need to restore its base-register a4, ←↩
BareED

has already done this - but all other non-scratch registers must be ←↩
restored

on exit

pm_DumpStrings() = pointer to a function:
Dump a series of string lines to a raster port where the current attributes ←↩

of the archive
will be taken into account

INPUTS:
rp - raster port - where to render into
dump_code - your function that dump this raster port e. g. to the ←↩

printer
RETRUN TRUE to continue with the next line or FALSE to stop
PARAMETERS you’ll get from DumpStrings:

length - pixel length of this string
line - line number of the actual line, counted from one
to endless

start - address of the character you like to start with
stop - at this character (address) DumpStrings() will stop - if ←↩

not
encountered already archive’s end

RESULTS:
rp - Raster port with visualized and laid out string

NOTES:

in 11 / 12

Before you call DumpStrings() or DumpStrLine() you should use ←↩
the

appropriate draw mode and pens.
The length in pixels you’ll get from DumpString() is the original string ←↩

length -
perhaps it has been truncated to let this string fit into your raster port.
After each dump you should clear the contents of your raster port, e. g. ←↩

using
ClearEOF().
You may use standard Bitmaps or foreign if OS 3.0 is at least available.
This routine calls DumpStrLine().
Your dump_code() does not need to restore its base-register a4, BareED
has already done this - but all other non-scratch registers must be ←↩

restored
on exit

pm_FreeProgressBar = pointer to a function
Free an earlier obtained ProgressBar inclusive the resources used by it

INPUTS:
pb - returned pointer from pm_CreateProgressBar() that points ←↩

to a
ProgressBar structure which only has one useable item: pb_Window - which
points to the window used by this progress-bar

RESULTS:
none

pm_CreateProgressBar = pointer to a function
Create a window with a progress bar in it. Not more!

INPUTS:
wintitle - String shown as title of the window (this title must be supplied ←↩

!)
hail - String shown above of progress bar [(optional parameter)] When

used this string must not contain any format arguments! (valid is
e. g.: "Completed to")

stop - String shown in left gadget [(optional parameter)] (e.g.: "Pause")
--- due to a bug in pm_TogglePBarGad() this string should be
set up as follow: "Pause/Continue"

cont - String shown in left gadget as alternative text [(optional)] due ←↩
to
a bug in pm_TogglePBarGad() this text will never be displayed
- so there is no necessity to supply it

cancel - String shown in right gadget [(optional)]
When you can only do "Pause/Continue" you must use this
entry instead of "Stop"

RESULTS:
pb - pointer to a ProgressBar structure or zero if something went wrong

pm_PullPBarEvent = pointer to a function
Let this function do the necessary things to parse and interpret ←↩

messages sent by
Intuition/GadTools

INPUTS:
pb - pointer to a ProgressBar structure

in 12 / 12

RESULTS:
ID -0 = if this message has no meaning for you

-1 = right gadget (or centred - if a single) has been clicked by
user

-2 = left gadget (stop/cont) by user clicked

pm_TogglePBarGad = pointer to a function
Change state (text) in left gadget from either Stop to Cont or from Cont to ←↩

Stop.

pm_TogglePBarGad performs only the action when all three gadgets texts are ←↩
supplied.

INPUTS:
pb - pointer to a ProgressBar structure

RESULTS:
none

BUGS:
does currently not work well

	in
	DAC interface and applications
	Dump - the application that dumps the text-lines onto the printer
	Developer information
	Description

